Gabor and Log-Gabor Wavelet for Face Recognition

نویسنده

  • M. Ashraful Amin
چکیده

In practice Gabor wavelet is often applied to extract relevant features from a facial image. This wavelet is constructed using filters of multiple scales and orientations. Based on Gabor’s theory of communication, two methods are proposed to acquire initial features from 2D images that are Gabor wavelet and Log-Gabor wavelet. Theoretically the main difference between these two wavelets is Log-Gabor wavelet produces DC free filter responses, whereas Gabor filter responses retain DC components. This experimental study determines the characteristics of Gabor and Log-Gabor filters for face recognition. In the experiment, two sixth order data tensor are created; one containing the basic Gabor feature vectors and the other containing the basic Log-Gabor feature vectors. This study reveals the characteristics of the filter orientations for Gabor and Log-Gabor filters for face recognition. These two implementations show that the Gabor filter having orientation zero means oriented at 0 degree with respect to the aligned face has the highest discriminating ability, while Log-Gabor filter with orientation three means 45 degree has the highest discriminating ability. This result is consistent across three different frequencies (scales) used for this experiment. It is also observed that for both the wavelets, filters with low frequency have higher discriminating ability. DOI: 10.4018/978-1-61520-991-0.ch004

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Textural feature based face recognition for single training images

A novel face recognition algorithm using single training face image is proposed. The algorithm is based on textural features extracted using the 2D log Gabor wavelet. These features are encoded into a binary pattern to form a face template which is used for matching. Experimental results show that on the colour FERET database the accuracy of the proposed algorithm is higher than the local featu...

متن کامل

Log-Gabor Weber Descriptor for Face Recognition

It is well recognized that image representation is the most fundamental task of the face recognition, effective and efficient image feature extraction not only has small intraclass variations and large interclass similarity but also robust to the impact of pose, illumination, expression and occlusion. This paper proposes a new local image descriptor for face recognition, named Log–Gabor Weber d...

متن کامل

تشخیص چهره با استفاده از PCA و فیلتر گابور

Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...

متن کامل

Selecting Optimal Orientations of Gabor Wavelet Filters for Facial Image Analysis

Gabor wavelet-based methods have been widely used to extract representative features for face analysis. However, the existing methods usually suffer from high computational complexity of Gabor wavelet transform (GWT), and the Gabor parameters are fixed to a few conventional values which are assumed to be the best choice. In this paper we show that, for some facial analysis applications, the con...

متن کامل

Multi-view Face Analysis Based on Gabor Features

Facial analysis has attracted much attention in the technology for human-machine interface. Different methods of classification based on sparse representation and Gabor kernels have been widely applied in the fields of facial analysis. However, most of these methods treat face from a whole view standpoint. In terms of the importance of different facial views, in this paper, we present multi-vie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016